Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from *Saccharomyces cerevisiae* affects lanosterol’s C/D-ring cyclization and 17α/β-exocyclic side chain stereochemistry†

Tung-Kung Wu,* Yi-Chun Chang, Yuan-Ting Liu, Cheng-Hsiang Chang, Hao-Yu Wen, Wen-Hsuan Li and Wen-Shiang Shie

Received 14th August 2010, Accepted 15th October 2010

DOI: 10.1039/c0ob00582g

Site-saturated substitution in *Saccharomyces cerevisiae* oxidosqualene-lanosterol cyclase at Ile705 position produced three chair-boat-chair (C–B–C) truncated tricyclic compounds, two 17α-exocyclic protosteryl intermediates, two protosteryl C-17 truncated rearranged intermediates and the normal biosynthetic product, lanosterol. These results indicated the importance of the Ile705 residue in affecting lanosterol’s C/D ring stabilization including 6-6-5 tricyclic and protosteryl C-17 cations and 17α/β-exocyclic side chain stereochemistry.

Introduction

Oxidosqualene cyclases are a mechanistically intriguing family of enzymes that catalyze conversion of a common substrate, acyclic (3S)-2,3-oxidosqualene (1, OS) into diverse and complex tetracyclic or pentacyclic sterols and triterpenoids. An intricate and yet highly stereo- and regio-specific cationic cyclization/rearrangement mechanism, that encompasses substrate conformational prefolding, oxirane ring protonation and cleavage, cation/π interaction-directed consecutive tetracyclic ring annulation, 1,2-shifted hydride and methyl groups migration, and final specific deprotonation, has been proposed for the family of enzymes. Furthermore, one remarkable phenomenon of oxidosqualene cyclase is that the cyclase-catalyzed reactions can proceed in either an accurate or multifunctional fashion to achieve catalytic perfection or to generate diverse product profiles. Many cyclases, including oxidosqualene-lanosterol cyclases (OSCs or ERG7), oxidosqualene-cycloartenol synthases (CASs), β-amyrin synthases (BASs), lupeol synthases (LUP1s), manneral synthase, and cucurbitadienol synthases, make a single product or only minor byproducts (<1% of total); whereas baruol synthase from *Arabidopsis thaliana* is able to make a remarkable number of products. In addition, we previously identified several amino acid residues, including Tyr99, Thr232, His234, Phe445, Tyr510, Phe699, and Tyr707 of *Saccharomyces cerevisiae* ERG7, that are critical for enzyme catalysis. Site-saturated mutagenesis, which replaces the target residue with each of the other proteinogenic amino acids, of abovementioned residues resulted in the isolation of numerous enzymatic products, including mono-, bi-, and tetra-cyclic, truncated rearranged or altered deprotonated, as well as carbocationic intermediates traversing the mechanistic barrier from chair-boat-chair (C–B–C) to chair-boat-chair (C–C–C) substrate conformation. Specifically, these residues are all located on the protein’s active site cavity surface.

Although amino acids within the protein’s active site cavity surface are most likely to contribute to a catalytic outcome, residues outside of the active site can interact with active site residues and subsequently influence the protein structure to promote truncated or altered product formation. An example of a second-tier residue is His477 of *A. thaliana* CAS (CAS477), which has been demonstrated to form a hydrogen bond with the first-tier residue Tyr410 and is essential to the mechanism of cycloartenol biosynthesis. When CAS477 was mutated to other residues, the disruption of the hydrogen bond to Tyr410 allowed reorientation of the intermediate cation to form other products. To further define other critical amino acid residues involved in catalytic function or enzymatic plasticity, we set up a series of site-directed mutagenesis experiments to investigate the second-tier residues to evaluate the effects on the cyclization/rearrangement mechanism and product specificity/diversity. Among various residues of ERG7 under investigation, Ile705 of *S. cerevisiae* ERG7 (ERG7I705) is further characterized. Ile705 is a highly conserved residue in OSCs and CASs but replaced by Leu in BASs and LUP1s. The ERG7I705 is a second-tier residue located proximal to the previously identified first-tier Phe699 and Tyr707 residues. In addition, mutational study of Leu607 in *Alicyclobacillus acidocaldarius* squalene-hopene cyclase (SHC) (which corresponds to ERG7I705) resulted in formation of abnormal mono- and bi-cyclic truncated products, indicating a functional role during the polycyclization.
The product profiles of S. cerevisiae ERG7 site-saturated and ERG7/F699X/I705X double mutants

<table>
<thead>
<tr>
<th>AA substitution</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705G</td>
<td>35</td>
<td>23</td>
<td>34</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705F</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705A</td>
<td>78</td>
<td>13</td>
<td>8</td>
<td>0.3</td>
<td></td>
<td></td>
<td>21</td>
<td>6</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>I705V</td>
<td>75</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705D</td>
<td>37</td>
<td>32</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705N</td>
<td>19</td>
<td>41</td>
<td>37</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705Q</td>
<td>25</td>
<td>39</td>
<td>31</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705K</td>
<td>12</td>
<td>26.5</td>
<td>53.1</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>I705S</td>
<td>81.9</td>
<td>0.1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705P</td>
<td>36</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td></td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705S</td>
<td>88</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I705L</td>
<td>12</td>
<td>42</td>
<td>44</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F699M/I705F</td>
<td>1</td>
<td>17</td>
<td>18</td>
<td>46</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F699M/I705F</td>
<td>53</td>
<td>17</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neither cell viability nor product was characterized for the rest of the ERG7 mutants.

The product profiles of the ERG7 I705X site-saturated mutants produced various intermediate compounds with molecular mass of 426 Da. The ERG7I705F mutant produced four intermediates, ranging from one to five intermediates, whereas the ERG7I705V mutant produced one intermediate. The product profiles from each mutant were characterized by extracting the non-saponifiable lipid from the ERG7I705Y/W/H/E/R non-viable mutants, consistent with the results from genetic analysis. Different viable mutants produced diverse product profiles, ranging from one to five intermediates, with molecular mass of 426 Da. The ERG7I705L mutants produced lanosterol (13), while ERG7I705D/N/Q/T/C mutants produced diverse product profiles, ranging from one to five intermediates, with molecular mass of 426 Da. The ERG7I705X mutants produced truncated compounds with molecular mass of 426 Da. The truncated compounds with molecular mass of 426 Da are summarized in Table 1.

process. The ERG7 might interact with first-tier residues, and subsequently influence the ERG7 active site to achieve a truncated or altered product formation.

Here, we performed the ERG7 site-saturated and ERG7/F699X/I705X double mutations using the QuikChange site-directed mutagenesis kit and transformed the mutated plasmids into a yeast TKW14 strain for genetic selection, as previously described. The results showed that the TKW14[ERG7X] mutant strains complement ergosterol-independent growth, with the exception of the Tyr (Y), Trp (W), His (H), Glu (E), and Arg (R) substitutions. Subsequently, the product profiles from each mutant were characterized by extracting the non-saponifiable lipid (NSL) and applying it onto AgNO3-impregnated silica gel column for separation in order to analyze the product structures by GC-MS and NMR (‘H, 13C NMR, DEPT, 1H-1H COSY, HMQC, HMBD, and NOE) spectroscopic techniques.

Results and discussion

The product profiles of the ERG7 site-saturated mutants with molecular mass of 426 Da are summarized in Table 1. Neither lanosterol (2) nor truncated intermediates were isolated from the ERG7X/Y/W/H/E/R non-viable mutants, consistent with the results from genetic analysis. Different viable mutants produced diverse product profiles, ranging from one to five truncated compounds with molecular mass of 426 Da. The ERG7X mutants produced lanosterol (2) as the sole product. The viable mutants, ERG7X/Y produced 2 in conjunction with (13αH)-isomalabarica-14E,17E,21-dien-3β-ol (3) and (13αH)-isomalabarica-14Z,17E,21-dien-3β-ol (4), while ERG7X/Y/N/O/T/C mutants produced 2, 3, 4 and protosta-13(17),24-dien-3β-ol (5). The ERG7X mutant produced 2, (13αH)-isomalabarica-14(26),17E,21-trien-3β-ol (6), 17α-protosta-20,24-dien-3β-ol (7) and two novel yet unidentified compounds with a C13H20O formula. The first of these new compounds was identified by NMR spectroscopy as 17α-protosta-20(22),24-dien-3β-ol (8), a product with Δ20(22) double bonds and a C-17α exocyclic hydrocarbon side chain configuration, based on following data. The 1H NMR spectra showed three vinyl methyl singlets (δ 1.66, 1.60, 1.52), five methyl singlets (δ 1.11, 0.95, 0.90, 0.80, 0.75) and two olefinic protons (δ 5.07, 5.07). Two tertiary–quaternary substituted double bonds (δc 131.85, 124.31 and 137.70, 123.91) were detected by 150 MHz 13C NMR. These results indicated the presence of a tetracyclic nucleus with a terminal hydrocarbon side chain double bond. The HMQC and HMBD spectra showed the following features: (1) the vinyl proton at δ 5.07 (δc 123.91, C-22) was coupled to carbons at 13.44 ppm (C-21), 27.77 ppm (C-23) and 51.29 ppm (C-17); (2) the vinyl proton at δ 5.07 (δc 131.85, C-23) was coupled to carbons at 18.18 ppm (C-27), 26.16 ppm (C-26) and 124.31 ppm (C-25); (3) the proton at δ 2.65 (δc 27.77, C-23) was coupled to carbons at 123.91 ppm (C-22), 124.31 ppm (C-25), 131.85 ppm (C-24) and 137.70 ppm (C-20); (4) the proton at δ 2.07–2.11 (δc 51.29, C-17) was coupled to 13.44 ppm (C-21), 25.78 ppm (C-12), 27.77 ppm (C-16), 44.94 ppm (C-13), 123.91 ppm (C-22), and 137.70 ppm (C-20); and (5) the proton at δ 1.59 (δc 44.94, C-13) was coupled to carbons at 16.93 ppm (C-30), 23.41 ppm (C-11), 25.78 ppm (C-12), 50.79 ppm (C-14), 137.70 ppm (C-20) and 51.29 ppm (C-17). These correlations established the bond connectivity between the tetracyclic nucleus skeleton and the exocyclic hydrocarbon side chain as well as the Δ20(22) double bond positions (Fig. 1a). The presence of NOEs among Me-19/Me-18 and Me-20/H-17 confirmed the C–B–C nucleus side chain conformation.

The second new compound was characterized as protosta-16,24-dien-3β-ol (9), a product with Δ16,24 double bonds based on the following data. The 1H NMR spectra showed two olefinic protons (δ 5.15, 5.09), two vinylic methyl signals (δ 1.65, 1.57) and six methyl singlets (δ 1.17, 0.95, 0.94, 0.93, 0.91, 0.75). The 150 MHz 13C NMR spectrum revealed the presence of two...
Fig. 1 Bond connectivity and stereochemistry established by HSQC/HMBC (bold bond, —) and NOE interaction (curved arrows) of (a) 17α-protopa-20(22),24-dien-3β-ol (8) and (b) protosta-16,24-dien-3β-ol (9).

tertiary-quaternary substituted double bonds (δC 120.48, 151.71 and 125.51, 131.58 ppm). The HMQC and HMB spectrum showed that the methylene protons at δ 1.46–1.49 were attached to the carbon at 35.82 ppm (C-22) and coupled by 1J to carbons at 34.33 ppm (C-20) and 26.73 ppm (C-23), as well as by 3J connectivity to carbons at 151.71 ppm (C-17), 125.51 ppm (C-24) and 20.14 (C-21). Furthermore, the C-20 tertiary proton at δ 2.09 showed 2J and 3J coupling to C-21, C-22 and C-17, as well as to C-23, C-16 (δC 120.48) and C-13 (δC 48.77). Finally, the δ 5.15 tertiary vinyl proton attached to the C-16 was coupled by 2J to C-17 and C-15 (δC 39.02), as well as by 3J connectivity to C-20 and C-13. These correlations established key structural features of the two double bonds located between C-16 and C-17, and between C-24 and C-25. Moreover, the presence of NOEs among H-13/Mc-30, Mc-30/H-3, H-3/Me-29, Me-28/Me-18 and Me-28/Me-19, as well as the absence of NOEs between Me-19/Mc-30 and Me-18/Mc-30, confirmed the trans-syn-trans stereochemistry and the structure being that of protosta-16,24-dien-3β-ol, a product with α,β,γ double bonds (Fig. 1b). The ERG7F699G mutant produced 2, 3, 4, and 9 in the ratio of 81.9:0.1:15:3; whereas, the ERG7F699G/K/S mutants produced 2, 3, 4, 5, and 9 in the ratios of 78:13:8:0:3:0.7, 12:26:53:8:1 and 12:42:44:1:1 respectively. Finally, the ERG7F699G mutant produced 2, 3, 4, 5, 8, and 9 in a relative ratio of 35:23:34:6:1:1. Interestingly, the ERG7F699G mutants produced product profiles similar to that of the ERG7F699X mutants, except for the truncated rearranged protosta-17(20),24-dien-3β-ol (10) and C–C tricyclic malabarica-14E,17E,21-trien-3β-ol (11).14

The ERG7F699X site-saturated mutants-catalyzed oxidosqualene cyclization/rearrangement pathways (Scheme 1) can be rationalized as follows: For the ERG7F699X viable mutants, OS may have entered the enzyme active site cavity with a prefolded C–B–C conformation and cationically cyclizes to a C–B 6-6-5 tricyclic Markonikov C-14 cation (Ia) as the first stopping point. Subsequent abstraction of the proton from the C-15 position, with varying predispositions then resulted in the production of 3 and 4. In the ERG7F699X viable mutant, an alternative abstraction from the C-26 proton produced 6 as the end product. No OS can be cyclized to the alternative C–6-6-5 tricyclic Markonikov C-14 cation Ib by the ERG7F699X mutants. Subsequently, the cation Ia can proceed with a C-ring expansion followed by D-ring annihilations (II) to generate two protosteryl C-20 cations with different stereochemical control at the C-17 position (IIIa and IIIb). Notably, in the ERG7F699G/F mutants, IIIa with a C-17α exocyclic hydrocarbon side chain proceeded the deprotonated termination at C-21 or C-22 position to produce 7 and 8. Conversely, in most viable mutants, the protosteryl C-20 cation was formed with a C-17β side chain conformation IIb. A backbone rearrangement of H-17α to H-20α, via a 1,2 hydride shift, was then able to generate protosteryl C-17 cation IV. The ERG7F699G/A/K/S/P mutants eliminated a proton from C-16 to generate 9, while the ERG7F699G/A/D/N/Q/K/T/C/G mutants abstracted the C-13 proton to yield 5. Finally, subsequent skeletal rearrangements of two methyl-group shifts (Me-14β→Me-13β and Me-8α→Me-14α) and two hydride shifts (H-13α→H11α and H-9β→H8β) generated the lanosteryl C-8/C-9 cation (V), which underwent deprotonation at C-9 or C-8 to form 2, a normal biosynthetic product.

To date, only limited examples for mechanistic transition between C-17α and C-17β have been achieved by use of simple mutations.13,16 We previously isolated 17α-protopa-20,24-dien-3β-ol (7) from the ERG7F699X mutant, suggesting the mutational effect on generation of protosteryl C-20 cation with C-17α stereochemical control (IIIA) and subsequent deprotonation at C-21 to form 7. In the present study, the ERG7F699X mutants were able to generate the IIIa cation, proceeded by deprotonated termination at the C-22 position to yield 17α-protopa-20(22),24-dien-3β-ol (8). These observations provided further support for the mechanism of plasticity of the active site residues and the notion that the replacement of a single amino acid residue can dramatically affect catalytic fidelity. It is conceivable that the isolation of truncated rearranged intermediates 9, but not 5, from the ERG7F699X mutant indicated that the Phe or Pro substitution also was able to determine the normal protosteryl C-20 cation with C-17β stereochemistry and control the proton abstraction from C-16 position, as opposed to the C-13 position. Nevertheless, most of the viable substitutions at the Ile705 position affected tricyclic cation Ia and protosteryl C-17 cation IV, resulting in the production of 3, 4 and 5 as truncated products.

The similarity of product profiles produced by both ERG7F699X and ERG7F699X mutants provoked us to investigate the amino acid interactions between first- and second-tier residues in the product profile. The ERG7F699X, ERG7F699F, and ERG7F699X mutated plasmids, which produced either no, single, or diverse product profiles, were further subjected to a second Ile705Phe (I705F) mutation (Table 1). As expected, the ERG7F699X/I705F double mutant caused yeast non-viability and no product formation, supporting the importance of F699C mutational effect on the regulation of enzyme activity. Alternatively, the ERG7F699X/I705D double mutant altered product specificity from a single compound (5 (>99.8%) to diverse products 2, 5, 7, and 8 in the relative ratio of 36:45:7:12.
This finding indicated that the electrostatic interactions between Ile705 and Phe699 play a role in product specificity. Finally, the ERG7^{F699M/I705F} double mutant changed product profile from 2, 6, 7, 8 and 9 to 2, 3, 4, 5 and 8, a product profile shift from that of ERG7^{I705F} single mutant towards that of ERG7^{F699M} or ERG7^{Y99X} single mutant. This shift revealed a functional role for the Ile705 to Phe substitution in influencing the Phe699 or Tyr99 residues and the consequent regulation of the substrate’s exocyclic hydrocarbon side chain stereochemistry.

The homology structural model of ERG7 complexed with cation IV was determined by using the human OSC crystal structure as template. The structural analysis indicated that the Ile705 is a second-tier residue and spatially proximal to the first-tier residues Tyr99 and Phe699 (Fig. 2). Our previous ERG7^{I705X} site-saturated mutagenesis results had indicated that Phe699, in conjunction with Tyr99, His234, and Tyr707, may play a functional role in restricting the C–B–C conformation and/or side chain rotation, as well as in stabilizing the protosteryl C-17 cation.

Perhaps, the ERG7^{I705} is able to interact with the first-tier residues and subsequently influence the ERG7 active site to promote truncated or altered product formation. Substitution of Ile705 with Phe may disrupt the stabilization of Phe699 to protosteryl C-17 cation or Tyr99 to C–B 6-6-5 tricyclic Markovnikov C-14 cation. This, in turn, could have impaired the catalytic fidelity of the enzyme and resulted in the shift of the product profiles towards that of ERG7^{F699M} and ERG7^{Y99X}.

Conclusions

In summary, our ERG7^{I705X} site-saturated and ERG7^{F699X/I705F} double mutation experiments were able to unravel the catalytic role of the second-tier Ile705 residue. Specifically, our findings indicated functional roles for Ile705 in mediating the C–B tricyclic Markovnikov C-14 cation, 17α/17β stereochemistry of exocyclic hydrocarbon side chain and protosteryl C-17 cation for final deprotonation product formation. Moreover, a product with tailored specificity could be obtained via subtle molecular interaction changes between the second-tier residue and its neighboring first-tier amino acids.
Experimental

Generation and analysis of mutant extracts. Mutagenesis of Ile705 in the S. cerevisiae ERG7 wild-type gene was performed using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The degenerate site-saturated mutagenic primers for Ile705 were the following, with substitutions underlined and silent mutation italicized:

ERG7I705X1: 5′-d(CACTCTTTGCGANNNGAATCCGGAGTTATCGATT)-3′

ERG7SQCYT2: 5′-d(GAATCAGATAACTCGGTATTCNNNTGCACACAGAGT)-3′

The PCR reaction mix was composed of 0.8 mM of dNTPs, 100 ng of pRS314ERG7WT plasmid template, 1X Pfu polymerase buffer, 1 μL of each primer, 2.5 U of Pfu DNA polymerase and ddH2O to a final volume of 20 μL. The reaction mixture was denatured at 95 °C for two min, and then run for 16 min. The PCR products were incubated with Dpn I at 37 °C for one min and propagated on an LB plate containing 100 μg ampicillin incubated at 37 °C for two min, and then run for 18 cycles of denaturation at 95 °C for 30 s, annealing at 50 °C for one min, polymerization at 68 °C for one min; a final extension was carried out at 68 °C for 16 min. The PCR products were incubated with Dpn I at 37 °C for three hours to digest the parental supercoiled DNA. The digested PCR products were mixed with 100 μL of E. coli XL-Blue competent cells and incubated on ice for 20 min. The cells were transformed by the heat shock method for one min at 42 °C followed by one min on ice. The cells were immediately transferred to 1 mL Luria-Bertani (LB) medium and shaken at 200 rpm for one hour at 37 °C. The cells were centrifuged at 6,000 × g for one min and propagated on an LB plate containing 100 μg/mL ampicillin incubated at 37 °C for 16 h. The resulting colonies were individually picked and cultured overnight at 37 °C in 3 mL of LB medium containing 100 μg/mL ampicillin. The plasmid DNAs were isolated by plasmid miniprep purification kit, according to the manufacturer's instruction.

The mutations were confirmed by DNA sequencing and subsequently electroporated into the yeast strain TKW14 and subsequently electroporated into the yeast strain TKW14 and characterized by GC-MS and NMR (1H, 13CN M R , DEPT, HSQC, HMBC, and NOE) spectroscopic techniques.

Chemical shifts of 17α-protopasta-20(22),24-dien-3β-ol (9). Chemical shifts were referenced to Si(CH3)4 and are generally accurate to ±0.01 ppm. 1H NMR (600 MHz, CD2Cl2): δ 5.15 (septet, 1H, H-15), 5.087 (tt, J = 5.8 Hz, 1H, H-16), 3.194 (dd, J = 11.7, 5.1 Hz, 1H, H-3α), 3.194 (dd, J = 11.7, 5.1 Hz, 1H, H-3α), 2.638 (dd, J = 12.9, 3.2 Hz, 1H, H-13) 2.219 (d, J = 14.65 Hz, 1H, H-15), 2.092 (dd, J = 14.115, 6.77 Hz, 1H, H-20), 1.948–1.909 (m, 2H, H-23), 1.900–1.879 (m, 1H, H-7), 1.734–1.714 (dddd, 1H, H-12), 1.651 (s, 3H Me-26), 1.659–1.584 (m, 4F2H for H-2, 1H for H-15, 1H for H-9), 1.566 (s, 3H, H-15), 1.574–1.532 (m, 4H, 1H for H-5, 1H for H-6, 2H for H-11), 1.494–1.457 (m, 1H, H-22), 1.172 (s, 3H, Me-30), 0.952 (s, 3H, Me-29), 0.940 (s, 3H, Me-21), 0.930 (s, 3H, Me-18), 0.909 (s, 3H, Me-19), 0.752 (s, 3H, Me-28). 13C NMR Spectra δ 33.87 (C-1), 30.02 (C-2), 79.85 (C-3), 39.94 (C-4), 48.72 (C-5), 19.27 (C-6), 35.89 (C-7), 40.37 (C-8), 46.72 (C-9), 37.66 (C-10), 23.41 (C-11), 25.78 (C-12), 44.94(C-13), 50.79 (C-14), 32.33 (C-15), 27.77 (C-16), 51.27 (C-17), 16.93 (C-18), 23.2 (C-19), 137.7 (C-20), 13.44 (C-21), 123.91 (C-22), 27.77 (C-23), 131.85 (C-24), 124.31 (C-25), 26.16 (C-26), 18.18 (C-27), 16.71 (C-28), 29.61 (C-29), 22.27 (C-30).

Notes and references