First principles model calculations of the biosynthetic pathway in selinadiene synthase

Susanta Das, Mudit Dixit, Dan Thomas Major*

Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

A R T I C L E I N F O

Article history:
Received 20 June 2016
Revised 30 June 2016
Accepted 2 July 2016
Available online 4 July 2016

Keywords:
Terpene synthase
Selinadiene synthase
Enzyme catalysis
Density functional theory
QM/MM docking

A B S T R A C T

Terpenes comprise the largest class of natural products currently known. These ubiquitous molecules are synthesized by terpene synthases via complex carbocationic reactions, incorporating highly reactive intermediates. In the current study, we present a mechanistic investigation of the biosynthetic pathway for the formation of selina-4(15),7(11)-diene. We employ density functional theory to study a model carbocation system in the gas-phase, and delineate the energetic feasibility of a plausible reaction path. Our results suggest that during formation of selina-4(15),7(11)-diene, the substrate is likely folded in a conformation conducive to sequential cyclizations. We propose that a required proton transfer cannot occur intramolecularly in the gas-phase due to a high free energy barrier, and that enzyme assistance is essential for this step. Hybrid quantum mechanics-molecular mechanics docking studies suggest that enzyme intervention could be realized through electrostatic guidance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Terpenes constitute a ubiquitous class of natural molecules that are synthesized by terpene cyclases. Terpene synthases catalyze what are arguably the most complex chemical reactions in nature. Cyclic terpenoid compounds are generated from acyclic isoprenoid diphosphate substrates via intricate carbocationic cyclization reactions. The terpenoid synthase chemical repertoire includes regio- and stereospecific ring formations, deprotonations to form double bonds, quenching of carbocations by water to form alcohols, and stereospecific hydride, proton, methyl, and methylene migrations. Currently, more than 60,000 isoprenoids have been identified in terrestrial and marine plants, fungi, and bacteria, and their chemistry has been studied comprehensively.

One of the first computational investigations into biosynthetic carboxication chemistry was performed by Jenson and Jorgensen. In this pioneering work, the authors adopted a combined gas-phase quantum mechanics (QM) and molecular mechanics (MM) approach to model sterol biosynthesis. The reaction path in the gas-phase was mapped out employing ab-initio and density functional theory (DFT) calculations, while the effect of solvation was accounted for via MM Monte Carlo simulations. One of the main conclusions of this study was that ring formation in terpenes might be concerted processes. Another important conclusion was that the effect of non-polar solvents, mimicking the hydrophobic active site environment in terpenoid cyclases, did not significantly influence the gas-phase reaction energy profiles. The authors noted, however, that selective placement of nucleophilic groups and indole rings originating from the enzyme matrix, could readily shift the carbocation equilibrium. These conclusions, which rather remarkably were drawn in the absence of a crystal structure, remain largely true today, and constitute important aspects of control elements in terpene cyclases. Later important work in the area of gas-phase modeling of terpenes includes that of Hess and co-workers on sesquiterpenes and triterpenes, and the extensive multifaceted work of Tantillo and co-workers.

In the current work we focus on selina-4(15),7(11)-diene (Sd), which is synthesized by Sd synthase (SdS). Selinenes are sesquiterpenes found in a wide variety of plant sources, such as hops, oranges, and mango. The proposed mechanism for selina-4(15),7(11)-diene, formation is shown in Scheme 1.

Following initial C-O bond cleavage of farnesyl diphosphate (FPP), 1, to yield allyl cation A, a C1–C10 carbon bond formation ensues to give cation B. A subsequent deprotonation gives germacrene, 2, which is a minor side-product in the enzymatic synthesis. An additional carbocation, C, is formed via a protonation at C6, followed by a carbon bond formation between C2 and C7 to yield intermediate D. The final product selina-4(15),7(11)-diene, 3, is obtained by deprotonation at the exocyclic C3 position.

An important ingredient of the above mechanism is an acid-base pair that can carry out the required proton shuffling between...
subsequently, the most favorable poses were subjected to QM/MM force field.33–35 Following this step, an additional 1 ps of QM/MM enzyme-cofactor-solvent system was treated by the CHARMM package, whereas the latter simulations used CHARMM interfaced with the Q-Chem program.36 In all the enzyme studies, the 40KZ crystal structure was employed,12 which corresponds to the closed form of the enzyme, and the system setup followed standard procedures.5,18,19 Briefly, the enzyme was embedded in a water droplet of 24 Å of TIP3P water.37 Water molecules that were within 2.6 Å of any enzyme, carbocation, crystal water heavy atom, PP or Mg2+ ions were deleted. All crystal water molecules beyond 24 Å of the reaction center were deleted. All protein atoms beyond the 24 Å sphere were treated by Newtonian MD.38,39 In the Langevin region, the protein atoms were assigned a friction coefficient of 200 ps−1, while for the water molecules the friction coefficient was set to 62 ps−1. The temperature of the simulations was 298 K. The simulations employed the Leap-Frog integration scheme with a time step of 1 fs.40 TIP3P water hydrogens were constrained using the SHAKE algorithm.11 The non-bonded interactions were set to zero at distances beyond 14 Å. The electrostatic forces were shifted to zero from a distance of 12 Å, while the vdW interaction energy was switched to zero at 12 Å.

2. Computational details

2.1. Model electronic structure calculations in the gas-phase

In earlier studies, we have performed extensive benchmark calculations to establish a reliable, yet practical approach to terpene synthase modeling.5,18–20 Based on these investigations of model carbocation reactions, we employ the meta-hybrid, M06-2X density functional21,22 with a 6-31+G(d,p) basis set.23 All integrations employed an ultrafine grid size. Optimization of reactants and transition states were performed using the Berny algorithm as implemented in the Gaussian 09 package.24 Normal modes of vibration of the optimized molecule were carefully inspected to verify the nature of the stationary points. All the reported free energy profiles were computed using the electronic energy combined with zero-point and thermal corrections using standard statistical mechanics expressions within the harmonic approximation and with a vibrational scaling factor of 0.967.25 Intrinsic reaction coordinate (IRC) calculations were performed to confirm that the transition structures connect reactants and products along the positive and negative directions of the chemical reaction coordinate.26,27 In cases where different conformations were feasible, these were constructed and evaluated.

2.2. Hybrid classical and QM/MM docking studies

To estimate the bound conformation of the intermediate structure, D, we performed classical and hybrid QM/MM docking studies. Initially, we performed classical docking using the CDocker method,28 as implemented in Discovery Studio (Biovia, Inc.). Subsequently, the most favorable poses were subjected to QM/MM MD simulations using the CHARMM program.29,30 Initially, 1 ns of QM/MM Molecular Dynamics simulations were performed, wherein the QM region was treated using the AM1 Hamiltonian32 and consisted of the carbocation moiety only. The remaining enzyme-cofactor-solvent system was treated by the CHARMM force field.31–33 Following this step, an additional 1 ps of QM/MM MD simulations were carried out, wherein the QM region was described by the M06-2X functional and included the carbocation, pyrophosphate moiety, and three Mg2+ ions. The remaining enzyme-solvent system was treated by the CHARMM force field. The former QM/MM simulations employed semi-empirical code embedded in

3. Results

3.1. Gas phase reaction

To gain an in-depth understanding of the reaction mechanism for the formation of Sd, 3, by SdS, it is important to understand the inherent energetics of the chemistry involved.22,34 Hence, we performed first-principles DFT gas phase calculations that can shed light on the possible reaction pathways in SdS biosynthesis.8,18 Scheme 2 compiles the carbocation intermediates and associated transition states along the path from cation A to cation D, which is the immediate precursor to Sd, 3.

The calculations commenced with a folded conformation of A (Fig. 1). In this state the C1–C10 distance is 6.32 Å, and the C1–C2 and C10–C11 π-systems are not fully aligned for reaction. The carbocation B1 may then be formed by a C1–C10 single bond formation, and this step is endergonic by 3.08 kcal/mol. The C1–C10 bond distance is 1.71 Å and the C1–C11 distance is 2.27 Å, suggesting hyperconjugation in this intermediate carbocation.45 The formation of B1 proceeds via a transition state with a low free

Scheme 1. Proposed biosynthetic pathway for selina-4(15),7(11)-diene, 3.

Scheme 2. Reaction steps along the biosynthetic pathway for selina-4(15),7(11)-diene, 3, investigated using DFT calculations in the gas-phase.
energy barrier of 5.72 kcal/mol (Fig. 1). The frequency of the reactive C1–C10 vibrational mode at the transition state is 61.1 cm⁻¹, while the C1–C10 bond distance is 3.24 Å. Subsequently, a similar carbocation, B2, may be formed via a slight rotation around the C10–C11 bond. B2 is nearly isoenergetic with B1, at 3.30 kcal/mol relative to A. The free energy barrier for this step is 2.15 kcal/mol, with an accompanying transition frequency of 85.0 cm⁻¹. The C9–C10 distance in B2 is 1.64 Å, while the C9–C11 distance is 2.10 Å, which is indicative of hyperconjugation. Subsequently, a 1–2 hydride shift to yield C may occur via a small free energy barrier of 4.15 kcal/mol. The transition frequency for this step is 192.4 cm⁻¹, and the C10–H and C11–H bond distances are 1.18 Å and 1.62 Å, respectively. The free energy of C is –10.94 kcal/mol relative to A. The cation in C is formally localized at the C10 position, although a shortened C2–C10 distance (1.71 Å) suggests that this cation is resonating between the C3 and C10 positions. A subsequent 1–6 proton transfer between the C11 and C6 positions is accompanied by a concerted and asynchronous C2–C7 bond formation to yield D (selina-4(15),7(11)-dienyl). The transition frequency for this step is 1132.1 cm⁻¹, and the C7–H and C11–H bond distances are 1.59 Å and 1.48 Å, respectively, and the donor–acceptor distance is 3.03 Å. The free energy barrier for this proton transfer is 25.10 kcal/mol, while the concerted proton transfer-bicyclization is exergonic by –19.33 kcal/mol relative to C. The proton transfer between C11 and C6 proceeds via a structure similar to B2, indicating that a direct proton transfer between C10 and C6 could be possible. However, no such direct reaction path was locate in the gas-phase. In the final state, D, the C2–C7 bond distance is 1.66 Å. Subsequent deprotonation at the exocyclic C3 position yields Sd, 3. In the final product, the C2–C7 bicyclic bridge distance is reduced to 1.56 Å.

3.2. Hybrid classical and QM/MM docking studies

The final carbocation, D, was subsequently docked into the crystal structure of SdS, and refined using hybrid QM/MM MD simulations. The final pose was energy minimized and serves as a possible starting point for free energy enzyme simulations (Fig. 2). In this pose, the exocyclic C3 methyl group is 3.3 Å from the nearest PP oxygen, which could serve as the final deprotonating agent. The distance between C1 and the nearest PP oxygen is 5.8 Å, suggesting that some tumbling of intermediate structures can occur during catalysis. This is expected for terpene cyclases, as there are no specific hydrogen bonds that anchor the substrate or intermediates in a specific orientation. We further note that the carbonyl moieties of Asp181 and Gly182 point towards the active site, possibly stabilizing carbocation intermediates during the reaction.

4. Discussion

The gas-phase model reactions presented above suggest that a direct proton transfer from B2 or C to D, without enzyme intervention is not possible. Indeed, a direct proton transfer in B2 to yield D was not observed, while the observed transfer in C to give D has a prohibitively high free-energy barrier that is not compatible with enzyme reaction rates. This raises the question of how such enzyme intervention could manifest itself. A plausible option would be enzyme-assisted acid-base catalysis, wherein an active site amino-acid residue or a specifically bound water molecule could deprotonate B2 at the C10 position to yield 2, followed by protonation of 2 at the C6 position to give C. We note that 2 is an observed side-product in SdS. The most likely candidate for such an acid-base role is the PP moiety, as suggested by Dickschat and co-workers, and this is in line with work on other terpene synthases. In the docked pose of D, the distances between the nearest PP oxygen and the C6 and C10 positions are 5.5 and 6.0 Å, respectively, indicating that such a proton transfer is indeed
possible. An additional possibility is enzymatic electrostatic steering, which could assist intramolecular proton transfer. In the docked pose of D the distance between the C7 and C11 positions and the nearest PP oxygen are 5.0 and 6.2 Å, respectively. Hence a B2 intramolecular proton transfer from C10 (cation at C11) to C6 (cation at C7) could be accompanied by increased electrostatic interaction between the migrating charge and the PP moiety. Future enzyme simulations and possible experimental labeling experiments may shed further light on these possible proton transfer mechanisms.

5. Conclusions

In the present work, we presented a mechanistic investigation of the biosynthetic pathway for the formation of selina-4(15),7(11)-diene. We employed density functional theory to study a model carboxylation system in the gas-phase, and to understand the energetic feasibility of the reaction path. Our results suggest that a required proton transfer cannot occur intramolecularly in the gas-phase due to a high free energy barrier, and that enzyme assistance is essential for this step. Hybrid quantum mechanics-molecular mechanics docking studies propose that enzyme intervention could be realized through pyrophosphate-assisted acid-base catalysis or pyrophosphate-assisted electrostatic guidance. Future enzyme simulations and possible experimental labeling experiments may determine which of these possibilities is more plausible.

Acknowledgement

This work has been supported by the Israel Science Foundation (Grant 1560/14).

Supplementary data

Cartesian coordinates, energies, number of imaginary frequencies, and zero-point energy corrections for all molecules considered in this work. Intrinsic reaction coordinate pathways and reaction scan pathways for selected steps considered in this work. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2016.07.002.

References and notes